Global well-posedness of the critical Burgers equation in critical Besov spaces

نویسندگان

  • Changxing Miao
  • Gang Wu
چکیده

We make use of the method of modulus of continuity [7] and Fourier localization technique [1] to prove the global well-posedness of the critical Burgers equation ∂tu + u∂xu + Λu = 0 in critical Besov spaces Ḃ 1 p p,1(R) with p ∈ [1,∞), where Λ = √ −△. 2000 Mathematics Subject Classification: 35K55, 35Q53

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Global Solutions of the Super-critical 2d Quasi-geostrophic Equation in Besov Spaces

In this paper we study the super-critical 2D dissipative quasi-geostrophic equation. We obtain some regularization effects allowing us to prove global well-posedness result for small initial data lying in critical Besov spaces constructed over Lebesgue spaces L, with p ∈ [1,∞]. Local results for arbitrary initial data are also given.

متن کامل

Global well-posedness for the 3D incompressible inhomogeneous Navier-Stokes equations and MHD equations

The present paper is dedicated to the global well-posedness for the 3D inhomogeneous incompressible Navier-Stokes equations, in critical Besov spaces without smallness assumption on the variation of the density. We aim at extending the work by Abidi, Gui and Zhang (Arch. Ration. Mech. Anal. 204 (1):189–230, 2012, and J. Math. Pures Appl. 100 (1):166–203, 2013) to a more lower regularity index a...

متن کامل

On the Global Well-Posedness of the Critical Quasi-Geostrophic Equation

We prove the global well-posedness of the critical dissipative quasi-geostrophic equation for large initial data belonging to the critical Besov space Ḃ ∞,1(R ).

متن کامل

On the well-posedness of the full low-Mach number limit system in general critical Besov spaces

This work is devoted to the well-posedness issue for the low-Mach number limit system obtained from the full compressible Navier-Stokes system, in the whole space R with d ≥ 2. In the case where the initial temperature (or density) is close to a positive constant, we establish the local existence and uniqueness of a solution in critical homogeneous Besov spaces of type Ḃ p,1. If, in addition, t...

متن کامل

Global well-posedness of incompressible flow in porous media with critical diffusion in Besov spaces

In this paper we study the model of heat transfer in a porous medium with a critical diffusion. We obtain global existence and uniqueness of solutions to the equations of heat transfer of incompressible fluid in Besov spaces Ḃ 3/p p,1 (R ) with 1 ≤ p ≤ ∞ by the method of modulus of continuity and Fourier localization technique. AMS Subject Classification 2000: 76S05, 76D03

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008